
Language Extensions: Variants
by Xavier Pacheco

Delphi 2.0 has a new and power-
ful data type called the variant.

Variants were brought about in
support of OLE Automation which
makes use of them heavily. In fact,
Delphi’s variant data type is an
encapsulation of the variant used
with OLE. Delphi 2.0’s implementa-
tion of variants has also proven to
be useful in other areas of Delphi
programming, as I will illustrate.
Delphi 2.0 is the only compiled lan-
guage that properly integrates vari-
ants as a dynamic data type at run
time and as a static type at compile
time, in that the compiler always
knows that it is a variant.

Variants Change
Types Dynamically
One of the main purposes of vari-
ants is to have a variable whose
underlying data type cannot be de-
termined at run time. This means
that a variant can change the type
to which it refers at run time. For
example, the code shown in Listing
1 will compile and run properly.

Variants can support all simple
data types such as integers, float-
ing point values, strings, booleans,
date and time, currency and also
OLE Automation objects. Note that
variants cannot refer to Object
Pascal objects. Also, variants can
refer to a non-homogeneous array
which can vary in size and whose

data elements can refer to any of
the above data types, including
another variant array.

The Variant Structure
The data structure defining the
variant type is defined in the
SYSTEMS.PAS unit and is also
shown in Listing 2.

The TVarData structure con-
sumes 16 bytes of memory. The
first two bytes contain a word
value that represents the data type
to which the variant refers. Listing
3 shows the various values that
may appear in the VType field. The
next 6 bytes are unused. The
remaining 8 bytes contain the ac-
tual data represented by the vari-
ant. Again, this structure maps
directly to OLE’s implementation
of the variant type.

You’ll notice from Listing 2 that
the TVarData record is actually a
variant record. Don’t confuse this
with the variant type. Although the
variant record and variant type
have similar names, they represent

two totally different constructs.
The case statement in the TVarData
variant record indicates the type of
data to which the variant refers.
For example, if the VType field con-
tains the value VarInteger, then
only 4 bytes of the 8 data bytes in
the variant are used to hold an in-
teger value. Likewise, if VType has
the value varByte, only 1 byte of the
8 is used to hold a byte value.

You’ll notice that if VType con-
tains the value varString, the 8 data
bytes don’t actually hold the
string, but rather, they hold a
pointer to this string. This is an
important point because you can
access fields of a variant directly:

var V: Variant;
begin
 TVarData(V).VType :=
 VInteger;
 TVarData(V).VInteger := 2;
end;

You must understand that in some
cases this is a dangerous practice

var V: Variant;
begin
 V := ’Delphi 2.0 is Great!’; // Variant holds a string
 V := 1; // Variant now holds an integer
 V := 123.34; // Variant now holds a floating point
 V := True; // Variant holds a boolean
end;

➤ Listing 1

TVarData = record
 VType: Word;
 Reserved1, Reserved2, Reserved3: Word;
 case Integer of
 varSmallint: (VSmallint: Smallint);
 varInteger: (VInteger: Integer);
 varSingle: (VSingle: Single);
 varDouble: (VDouble: Double);
 varCurrency: (VCurrency: Currency);
 varDate: (VDate: Double);
 varOleStr: (VOleStr: PWideChar);
 varDispatch: (VDispatch: Pointer);
 varError: (VError: Integer);
 varBoolean: (VBoolean: WordBool);
 varUnknown: (VUnknown: Pointer);
 varByte: (VByte: Byte);
 varString: (VString: Pointer);
 varArray: (VArray: PVarArray);
 varByRef: (VPointer: Pointer);
end;

➤ Listing 2

{ Variant type codes }
varEmpty = $0000;
varNull = $0001;
varSmallint = $0002;
varInteger = $0003;
varSingle = $0004;
varDouble = $0005;
varCurrency = $0006;
varDate = $0007;
varOleStr = $0008;
varDispatch = $0009;
varError = $000A;
varBoolean = $000B;
varVariant = $000C;
varUnknown = $000D;
varByte = $0011;
varString = $0100;
varTypeMask = $0FFF;
varArray = $2000;
varByRef = $4000;

➤ Listing 3

September 1996 The Delphi Magazine 31

because it is possible to lose the
reference to a string or other gar-
bage collected entity, which will
result in your application leaking
memory. You’ll see what I mean by
the term garbage collected in the
following section.

Variants Are
Garbage Collected
By this I mean that Delphi automat-
ically handles the allocation and
de-allocation of memory required
for a variant type. For example, ex-
amine the code which assigns a
string to a variant variable below:

procedure ShowVariant;
var V: Variant
begin
 V := ’This is a long string’;
 ShowMessage(V);
end;

What actually happens here is that
Delphi first allocates the memory
for the string and then refers the
variant to that string by pointing to
it with the data bytes of the variant.
When the variant leaves scope,
that is, the procedure ends and re-
turns to the code that called it, the
string associated with the variant
is automatically freed. Delphi does
this by implicitly inserting
a try..finally block in the
procedure as shown in Listing 4.

This same implicit release of
memory occurs when you assign a
different data type to the variant,
for example, examine the two code
snippets in Listing 5.

Here again, Delphi must allocate
the memory for the string before
making the assignment. Then,
before assigning another value or
data type to the variant, the mem-
ory being used up by the string
must be released.

If you understand what happens
in these illustrations, you will see
why it is not recommended that
you manipulate fields of the
TVarData record directly as shown
below:

procedure ChageVariant;
var
 V: Variant
begin
 V := ’This is a long string’;

 TVarData(V).VType :=
 varInteger;
 TVarData(V).VInteger := 32;
 V := 34;
end;

Although this appears to be safe, in
fact it is not because it results in
the memory used by the string
being lost. As a general rule, don’t
access the TVarData fields directly,
or at least be absolutely sure that
you know exactly what you’re
doing.

Typecasting Variants
You can explicitly typecast expres-
sions to type variant. For example
the expression Variant(X) results
in a variant type whose type code
corresponds to the result of the
expression X which must be an
integer, real, currency, string,
character or boolean type.

You can also typecast a variant
to that of a simple data type. For
example, given the assignment
V := 1.6; where V is a variable of
type variant, the expressions in

procedure ChangeVariant;
var V: Variant
begin
 V := ’This is a long string’;
 V := 34;
end;

{This code causes Delphi to implicitly insert a try..finally statement
 as shown below: }

procedure ChangeVariant;
var V: Variant
begin
 { First allocate memory for the string and make the assignment }
 try
 V := ’This is a long string’;
 finally
 { Now free the memory associated with the variant before making
 the assignment below }
 end;
 V := 34;
end;

➤ Listing 5

procedure ShowVariant;
var V: Variant
begin
 { First allocate memory for the string and make the assignment }
 try
 V := ’This is a long string’;
 ShowMessage(V);
 finally
 { Now free the memory associated with the variant }
 end;
end;

➤ Listing 4

S := String(V); // S will contain the string ’1.6’
I := Integer(V); // I is rounded to the nearest integer value, in this case - 2
B := Boolean(V); // B contains false if V contains 0, otherwise B is true
D := Double(V); // D contains the value 1.6

➤ Listing 6

var V1, V2, V3: Variant;
begin
 V1 := ’100’; // A String type
 V2 := ’50’; // A String type
 V3 := 200; // An Integer type
 V1 := V1 + V2 + V3;
end;

➤ Listing 7

32 The Delphi Magazine Issue 13

Listing 6 will have the results
shown. These results are dictated
by certain type conversion rules
applicable to variants. These rules
are defined in detail in Delphi 2.0’s
Object Pascal Language Guide.

By the way, in the above exam-
ple, it is not necessary to typecast
the variant to another data type to
make the assignment. This code
would work just as well:

V := 1.6;
S := V;
I := V;
B := V;
D := V;

What happens here is that the
conversions to the target data
types are made through an implicit
typecast. However, because these
conversions are made at run time,
there is much more code logic
attached to this method. If you are
sure of the type which a variant
contains, then you are better off
explicitly typecasting it to that type
in order to speed up the operation.
This is especially true if the variant
is being used in an expression,
which I’ll discuss next.

Variants In Expressions
You can use variants in expres-
sions with the following operators:
+, =, *, /, div, mod, shl, shr,
and, or, xor, not, =, <>, <, >,
<=, >=. When using variants in ex-
pressions, Delphi knows how to
perform the operations based on
the contents of the variant. For ex-
ample, if two variants V1 and V2
contain integers, the expression V1
+ V2; results in the addition of the
two integers. However if V1 and V2
contain strings, then the result is a
concatenation of the two strings.
Now, what happens if V1 and V2
contain two different data types?
Delphi uses certain promotion
rules in order to perform the opera-
tion. For example, if V1 contains the
string ’4.5’ and V2 contains a float-
ing point number, V1 will be con-
verted to a floating point and then
added to V2. The code in Listing 7
illustrates this.

Based on what I just mentioned
about promotion rules, it would
seem at that first glance that the

code in Listing 7 would result in V1
having the value 350 as an integer.
However, if you take a closer look
you’ll see that this is not the case.
Because the order of precedence is
from left to right, the first equation
that gets executed is V1 + V2. Since
these two variants refer to strings,
a string concatenation is per-
formed resulting in the string
’10050’. That result is then added
to the integer value held by the
variant V3. Since V3 is an integer,
the result ’10050’ is converted to
an integer and added to V3’s value
giving an end result of 10250.

Delphi 2.0 promotes the variants
to the highest type in the equation
in order to successfully carry out
the calculation. However, when an
operation is attempted on two vari-
ants of which Delphi 2.0 cannot
make any sense, an Invalid variant
type conversion exception is raised.
The code below illustrates this:

var
 V1, V2: Variant;
begin
 V1 := 77;
 V2 := ’hello’;
 {next line raises exception}
 V1 := V1 / V2;
end;

As stated earlier, it is sometimes a
good idea to explicitly typecast a
variant to a specific data type if you
know what that type is and if it is
used in an expression. Consider
the following line of code:

V4 := V1 * V2 / V3;

Before a result can be generated for
this equation, each operation goes
through a run time function that
goes through several gyrations to
determine the compatibility of the
types which the variants repre-
sent. Then the conversions are
made to the appropriate data
types. This results in a large
amount of overhead and increased
compiled code size. A better
solution is obviously not to use
variants. However, when neces-
sary, you can also explicitly
typecast the variants so that the
data types are resolved at compile
time:

V4 := Integer(V1) *
 Double(V2) / Integer(V3);

Keep in mind that this assumes you
know the data types which the
variants represent.

Null And UnAssigned
There are two special types of vari-
ants that I need to briefly discuss.
The first is the varEmpty which
means that the variant has not yet
been assigned a value. This is the
initial value of the variant as it
comes into scope. varNull is differ-
ent to varEmpty in that it actually
represents a value. This is primar-
ily true of field values of a database
table. It is possible for a field to
contain a NULL value. You’ll see
later in this article how the TTable
component uses variants to
reference its fields.

Another difference is that at-
tempting to perform an equation
with a variant containing a varEmpty
value will result in an Invalid vari-
ant operation exception. The same
is not true of variants containing a
varNull value. However, when a
variant involved in an equation
contains a NULL value, that value
will propagate to the result.
Therefore, the result is always
NULL.

Efficiency Concerns
It may be tempting to use variants
instead of the conventional data
types since they seem to offer so
much flexibility. However, this will
increase the size of your code and
make it run slower. Additionally, it
will make your code more difficult
to maintain. Variants are useful in
many situations. In fact, the devel-
opers of Delphi use variants with
the database components because
of the flexibility they offer. Gener-
ally speaking, however, you should
use the conventional data types in-
stead of variants. Only in situations
where the flexibility of the variant
outweighs the performance advan-
tage of the conventional method
should you resort to using
variants.

Variant Arrays
Earlier I stated that a variant can
refer to a non-homogeneous array.

September 1996 The Delphi Magazine 33

Therefore this syntax is valid:

var V: Variant;
 I: Integer;
begin
 I := V[1];
end;

Now, although the code above will
compile, you’ll get an exception be-
cause the variant array has not yet
been created. There are several
ways to create a variant array. One
way is that the array is obtained
from an OLE server function:

V := SomeOleServer.GetSomeArray;

Additionally, there are a couple of
variant array support functions
that allow you to create a variant
array. These are VarArrayCreate
and VarArrayOf. The function
VarArrayCreate is defined as:

function VarArrayCreate(
 const Bounds:
 array of Integer;
 VarType: Integer): Variant;

To use it, you pass in the array
bounds for the array you want to
create and a variant type code for
the type of the array elements. For
example, the following returns a
variant array of integers and
assigns values to the array items:

var V: Variant;
begin
 {Create a 4-dimension array}
 V := VarArrayCreate([1, 4],
 varInteger);
 V[1] := 1;
 V[2] := 2;
 V[3] := 3;
 V[4] := 4;
end;

Assigning varVariant as the type
code allows you to create a variant
array of variants so that the ele-
ments of the array can differ. Also,
you can create a multi-dimensional
array by passing in the additional
bounds required. For example, the
code below creates an array with
the bounds [1..4, 1..5]:

V := VarArrayCreate([1, 4, 1,
 5], varInteger);

The VarArrayOf function is defined:

function VarArrayOf(
 const Values:
 array of Variant): Variant;

This function returns a one dimen-
sional array whose elements are
given in the Values parameter. The
example below creates a variant
array of 3 with integer, string and
floating point values:

V := VarArrayOf([1,’Delphi’,2.2]);

Variant Array
Support Functions
There are several other variant ar-
ray support functions. These func-
tions are defined in the System unit
and are also shown in Listing 8.

The VarArrayReDim function al-
lows you to resize the upper bound
of the rightmost dimension of a
variant array. The function
VarArrayDimCount returns the num-
ber of dimensions in a variant
array. VarArrayLowBound and
VarArrayHighBound return the lower
and upper bounds of an array
respectively. VarArrayLock and
VarArrayUnlock are two special
functions which I’ll go into more
detail in a moment.

VarArrayRef is a special function
that was added in a later release of
Delphi 2.0. this function resolved a
problem that existed in passing
variant arrays to OLE Servers. The

problem was that when you had a
statement such as:

Server.PassVariantArray(VA);

the array is passed not as a variant
array, but rather as a variant by
reference. If the server expected a
variant array a type mismatch
occurs. There was no way to pass
a variant array. VarArrayRef takes
care of this situation. It takes a
variant containing a variant array
and returns the expected type. Its
syntax is:

Server.PassVariantArray(
 VarArrayRef(VA));

VarIsArray returns true if the vari-
ant parameter passed to it is a vari-
ant array, otherwise false.

Initializing A Large Array
Variant arrays are important in
OLE Automation. You can use vari-
ant arrays to pass binary data to an
OLE Automation object. Examine
the line below:

V := VarArrayCreate(
 [1, 10000], VarByte);

This line creates a variant array of
10,000 bytes. Suppose you have
another array (non-variant) de-
clared of the same size and you
want to copy the contents of this
non-variant array to the variant

procedure VarClear(var V: Variant);
procedure VarCopy(var Dest: Variant; const Source: Variant);
procedure VarCast(
 var Dest: Variant; const Source: Variant; VarType: Integer);
function VarType(const V: Variant): Integer;
function VarAsType(const V: Variant; VarType: Integer): Variant;
function VarIsEmpty(const V: Variant): Boolean;
function VarIsNull(const V: Variant): Boolean;
function VarToStr(const V: Variant): string;
function VarFromDateTime(DateTime: TDateTime): Variant;
function VarToDateTime(const V: Variant): TDateTime;

➤ Listing 9

procedure VarArrayRedim(var A: Variant; HighBound: Integer);
function VarArrayDimCount(const A: Variant): Integer;
function VarArrayLowBound(const A: Variant; Dim: Integer): Integer;
function VarArrayHighBound(const A: Variant; Dim: Integer): Integer;
function VarArrayLock(const A: Variant): Pointer;
procedure VarArrayUnlock(const A: Variant);
function VarArrayRef(const A: Variant): Variant;
function VarIsArray(const A: Variant): Boolean;

➤ Listing 8

34 The Delphi Magazine Issue 13

array. Normally, you can only do
this by looping through the ele-
ments and assigning them to the
elements of the variant array as
shown below:

begin
 V := VarArrayCreate([1,
10000], VarByte);
 for i := 1 to 10000 do
 V[i] := A[i];
end;

The problem with this code is that
it creates too much overhead just
to initialize the variant array ele-
ments. This is due to the assign-
ments to the array elements having
to go through the run time logic to
determine compatibility and so
forth. To avoid this translation of
data, you should use the VarArray-
Lock and VarArrayUnlock functions.

VarArrayLock returns a pointer to
the array data and locks the array
so that it cannot be resized while it
is locked. VarArrayUnLock unlocks
an array locked with VarArrayLock.
Once the array is locked, you can
use a more efficient means to in-
itialize the data by using, for exam-
ple, the Move procedure with the
pointer to the array’s data. The
code below performs the initializa-
tion of the variant array show
above, but in a much more efficient
manner:

begin
 V := VarArrayCreate(
 [1, 10000], VarByte);
 P := VarArrayLock(V);
 try
 Move(A, P^, 10000);
 finally
 VarArrayUnlock(V);
 end;
end;

Database Use Of Variants
One of the areas where Delphi uses
variant types is with the FieldVal-
ues property of a TDataSet. This
property is declared as:

property FieldValues[
 const FieldName: string]:
 Variant; default;

FieldValues returns the value of a
field specified by FieldName as a

variant. So, you can obtain the
value of a field “Last Name” with the
following line:

LN := Table1.FieldValues[“LastName”];

Also, since FieldValues is the
default property for the TDataSet,
you can use the following syntax:

LN := Table1[’LastName’];

Since this is the likely way that
you’ll be accessing the field values
of tables, this shows why it is a
good idea for you to understand
how to work with variants. One
thing to keep in mind is that often
a particular field will contain a NULL
value. Attempting to assign a NULL
to a variable will result in an excep-
tion. So, if in the above line the
LastName field contains NULL you’ll
get an exception. Therefore, if
you’re not sure whether an field
may be NULL you should use the
VarToStr function:

LN := VarToStr(Table1[’LastName’]);

What this does is check to see if the
variant passed to it is NULL. If so, it
returns an empty string, otherwise,
it returns the string value.

Another area of importance is
the Locate function of a TDataSet,
which is declared as:

function Locate(const
 KeyFields: string;
 const KeyValues: Variant;
 Options: TLocateOptions):
 Boolean;

KeyFields lists one or more fields
separated by a semicolon on which
a search is to be performed.
KeyValues is a variant or variant
array specifying the field value or
values to match in the search. A
typical way to perform a search on
multiple fields is to use the
VarArrayOf function to construct
the variant array to pass to Locate.
An example is shown below:

if not Table1.Locate(
 ’LastName;FirstName’,
 VarArrayOf([’Fisher’,
 ’Pete’]),[]) then
 ShowMessage(’Not Found’);

Variant Use
In OLE Automation
Since this is not an article on OLE
Automation I won’t go into depth
on this topic. Basically, variants
can contain a reference to an OLE
Automation object. This means
that you can call methods and
get/set properties of the object
through the variant. Therefore, the
following lines of code would be
valid provided that the variant
refers to an OLE object:

V.SomeFunc;
V.SomeProp := 2;

As variants referring to strings are
garbage collected, so are variants
that refer to OLE Automation ob-
jects. For example, take a look at
the code below:

V := CreateOleObject(
 ’Word.Basic’);
V.FileNew(’Normal’);
V := 22;

The first line creates a variant
reference to an OLE Automation
server, specifically Microsoft
Word. The second line adds a new
file to the MS Word environment.
The third line assigns an integer
value to the variant. Before this
integer assignment is made, the
reference to the OLE Automation
object, any memory and resources
are freed implicitly. This is part of
the default garbage collection
handled by Delphi. OLE is really a
separate topic, or many separate
topics, in itself. Therefore, I just
wanted to briefly mention how
variants are used with this
technology.

Supporting Functions
There are several other support
functions for variants that you can
use. These function are declared in
the System unit and are also shown
in Listing 9.

The VarClear procedure clears a
variant and sets the TVarData.VType
field to varEmpty. VarCopy copies the
Source variant to the Dest variant.
The VarCast procedure converts a
variant to a specified type and
stores that result into another vari-
ant. VarType returns one of the type

September 1996 The Delphi Magazine 35

codes listed in Listing 3 on a
specified variant. VarAsType has the
same functionality as VarCast.
VarIsEmpty returns true if the type
code on a specified variant is
varEmpty. VarIsNull indicates
whether or not a variant contains a
NULL value. VarToStr was described
previously. VarFromDateTime re-
turns a variant which contains a
given TDateTime value. VarTo-
DateTime returns the TDateTime
value contained in a variant.

Conclusion
Variants are a powerful data type
that can add flexibility to your
applications. Also, with the in-
crease in OLE’s popularity, it is
beneficial for you to know how to
perform operations on variant data
types as well as issues regarding
variant usage. Finally, my thanks to
Steve Teixeira for his help in
reviewing this article.

Xavier Pacheco is a Field Consult-
ing Engineer with Borland
International and co-author of
Delphi 2.0 Developer’s Guide. You
can reach him by email at
xpacheco@wpo.borland.com or
on CompuServe at 76711,666

36 The Delphi Magazine Issue 13

	Variants Change Types Dynamically
	The Variant Structure
	Variants Are Garbage Collected
	Typecasting Variants
	Variants In Expressions
	Null And UnAssigned
	Efficiency Concerns
	Variant Arrays
	Variant Array Support Functions
	Initializing A Large Array
	Database Use Of Variants
	Variant Use In OLE Automation
	Supporting Functions
	Conclusion

